Makerbot Thing-o-Matic 3D Printer Print Pictures & Product Review

The Makerbot Thing-o-Matic, fully assembled and ready to print.

[Update: Welcome back, Slashdot! 🙂  This site is in full lockdown mode, so comments may take a little while to appear, but please leave them anyway! You may also want to check out the previous assembly photos also featured on Slashdot.]

Overview

3D printing has attracted notable attention in recent years, capturing interests of both geeks and laymen due to the obvious potential of a machine that fabricates three-dimensional shapes at will. While clearly far from the visionary “replicator” technology of Star Trek: The Next Generation–which could recycle almost any object–the Thing-o-Matic (and the like) have already begun branching out from the 3mm ABS plastic spools used build the objects in the following pictures. (I’ve also included picture from a another project that requires custom mounting widgets for solar cells.)
I’ve had my Makerbot Thing-o-Matic working for about a month, and I have to assume it only gets cooler from here. If you’re a hardcore DIY’er, or your technical dablings tend to involve small, intricate parts required of custom robotics, circuitry, metal/woodworking etc., read on, and seriously consider a 3D printer investment in the future.
The Unboxening & Assembly
Unboxing of the Thing-o-Matic kit. (See links for assembly pictures.)

After a couple months of girlish waiting, my DIY Makerbot Thing-o-Matic kit arrived in December 2010. Pictures of the laborious assembly process went up several days after, and have been viewed by tens of thousands of people in the last few weeks alone. Makerboot does not ship a printed manual with the machinery kit, instead option for an online-only “Thing-o-Matic Assembly Instruction/Users Manual”: a living collection of wiki pages that is continually updated. A good thing, indeed! Take a look at the assembly pictures if you haven’t already gotten a feel for the level of assembly effort. (If you’re good with your hands, allocate about 16 hours.)

Software Installation
My 3D model of an identical pair of custom solar cell brackets, done in Google SketchUp.

Once the machine is assembled, you’re ready to install the software, connect the machine via USB, and calibrate the system. Rough high-level steps are as follows:

  1. Install the Arduino driver, if not already installed. (Easy)
  2. Download and run ReplicatorG, and try making a software connection to the machine. (Easy. You’ll spend a lot of time in ReplicatorG.)
  3. Use ReplicatorG to manually control all the machines widgets, and test each one for proper function. (Medium.)
  4. Measure the the Z-axis height and change an obscure config file in your ReplicatorG software that you won’t understand for a few more days. (Medium.)
  5. Load up some plastic filament. (Easy.)
  6. Skeinforge interaction can be a frustrating chore.

    Within ReplicatorG, launch the embedded Skeinforge configuration application, which is used to take 3D design files in .STL and “slice” them in tooling paths that a machine can follow. This is necessary since 3D printers usually print in layers, starting with the lowest. Skeinforge is an extremely configurable system with an extremely shitty GUI. It is not immediately clear what most of the hundreds of settings do, and you’ll spend many trial iterations configuring options to dial in the best general settings. Even after calibration, you will need to periodically revisit Skeinforge to address build-specific issues. (Hard.)

  7. ReplicatorG build platform positional and orientation. Perfect!

    Use ReplicatorG to either upload a compiled .S3G files to the on-board SD card for disconnected printing, or stream the commands on the fly. (Easy.)

  8. Run the test job!  (Medium.)
  9. Go to #6. (Daunting.)

The workflow is initially very daunting and cumbersome. It starts to make more sense after a while, but needs major work. This is technically not Makerbot’s issue, but given that it’s a necessary component of the overall system I would suggest major effort be placed in unsuckifying the interaction before ReplicatorG and Skeinforge.

ReplicatorG
Once many initial configuration jobs are complete, your time in software will generally be spent across two applications:
  1. 3D design software package such as Google SketchUp (free), which is used to design your own objects. Once you’ve designed an object, you export an STL file that is imported into ReplicatorG, which is then sliced by Skeinforge into .gcode files and then by ReplicatorG into .s3g files that the Thing-o-Matics onboard Arduino understands.
  2. ReplicatorG (and included Skeinforge application), tweaking, compiling, and babysitting.
Materials
The Makerbot MK5 plastruder turns 3mm filament into hot, sticky plastic goo.
The mechanism that feeds, melts, and dispenses plastic on the Thing-o-Matic, Cupcake, RepRap and other 3D printers is called the “extruder”: often referred to as a “plastruder” for those designed to extrude plastic. Thing-o-Matic ships with the “Makerbot MK5 Plastruder“, designed to feed solid 3mm spool of plastic filament into a heating element that melts and dispenses a thin stream of melted plastic.  ABS is essentially Lego plastic, and solid at room temperature. (Grab a handful of Lego bricks to get a feel for the weight, texture, color of ABS.) At the melting point slightly above 220 degrees Celcius, ABS turns into a half-solid, half-liquid ooze that is melty enough to extrude into the shape of your choice, while remaining solid enough to hold form long enough to cool back into a solid.
Many different colors of ABS filament are available. These 1 lbs. packages of red, yellow and green plastic were purchased for $15 each as part of a larger order.
In my area (Phoenix, Arizona, apparently the 5th largest city in the United States by population), I’ve yet to find a local source of the stuff. I’ve called sales departments of several local plastics suppliers, and none have even known where to find it. I’ve also failed in contacting several other online suppliers; my requests for quotes have all gone unanswered. While happy with the two ABS shipments I’ve received from Makerbot, but it would be nice to have competitive options in the low-volume market. Makerbot sells 5-pound spools of “natural” (off-white) colored ABS for $45 (USD), and a variety of colors for $65 (USD) plus applicable taxes and shipping. And shipping is not free.
Assessment
Solar cell bracket revisions.
Revisions 1, 2 and 3 of the solar cell bracket, from left to right.

Given the complexity of the machinery, you have a lot to consider before making the investment.

Thing-o-Matic Pros
  • Extremely cool. You will almost definitely be the only kid on the block with this toy.
  • Makerbot maintains the Thingiverse: a user-driven database of open source 3D objects.
  • Semi-automated batch jobs via the included Automated Build Platform.
  • All needed parts and come with the kit. (BYO tools.)
  • Supplies (such as ABS) are also available from Makerbot.
  • Some parts, such as this pair of brackets printed simultaneously, need trimming and/or sanding.

    Documentation is 4 of 5. The 5 is for comprehensiveness and getting me through the process, but -1 for ocassionally erronous images, ambiguous text, or omission of step.

  • Minimal soldiering, and much less than I’d anticipated.
  • Minimal number of “only one chance” assembly instructions such as cutting and gluing,
  • Open Source hardware design. You can print many of your own replacement parts if some break.
  • Science!
Thing-o-Matic Cons

Four solar cell bracket are shown partially assembled into a larger structure.

  • Generally not robust enough to run unattended.
  • Post assembly calibration gets fuzzy, as there is no 100% Right Way to do things.
  • I’m 90% sure that something about the Arduino driver is unstable. I regularly make my entire Mac greyscreen (the OSX equivalent of a Windows BSOD or a Linux kernel panic) during plug/unplug process of connecting/disconnecting the USB from the Makerbot to my computer.  Something, somewhere, is dying a horrible death and taking my whole operating system with it.
  • Skeinforge–the software that converts your 3D models to tool paths–has an absolutely atrocious (and ofter unstable) user interface. Few of the 100+ configuration options are clearly documents within the app, which is buggy to start with.
  • The machine can be somewhat loud and obvoxious. In my case, the XY axes aren’t bad, but the Z axis stepper motor can be very irritating.
  • If you do this, you are making a very big time commitment.
  • Questionable electronic sub-component failure rates, and one of my biggest complaints. The motor on my MK5 Plastruder was dead on arrival, and my power supply went out after less than a dozen prints. I could just be unluckly, though.
Costs & Competition
Lots of small custom components.

Many small pre-fab printer shops have materialized in the last couple years, ranging from laser-cut wood frames (such as Makerbot), to clear acrylics, metals, and, of course, printed plastics. Regardless of your chosen path, the electronic components are currently not printable in any high-quality manner, are best purchased from a vendor. This includes mainboard microcontroller (the Thing-o-Matic uses as Arduino MEGA), stepper motor controllers, stepper motors, power supply, end stop sensors, extruder controller, cables etc. You can, of course, build these yourself, but in the case of highly available parts such as the Open Source Arduino, it’s far more cost effective to buy the $30 part than spend a day manually fabrication a PCB and hand soldier $20 of mail-order components.

20mm Test Cubes
Four iterations of the 20mm test cube: A, B, C and D.
Makerbot’s pricing ($1K-2K per machine) targets the small power user. Competition is available, but thin and very fragmented. A RepRap kit from one company may not be 100% compatible with the electronics kit from another. That’s just the nature of Open Source hardware. I love the idea of Open Source standards implemented and supported by commercial vendors, and Makerbot’s staff has done a great job so far. (Special thanks to Ethan H. for being the unfortunately soul responsible for handling both of my failure reports as well as one incorrect shipment. You’re awesome, dude!) You can also grab an older model at significant discount.
20mm Test Cube Print
Another 20mm test cube being printed.

In short, unless you have a Richard Stallman-level of commitment to F/OSS, try to buy all your components from only a few vendors. Makerbot is a good choice for U.S. buyers as though they only sell their own designs–a good thing, IMHO–but then, they don’t sell RepRap parts. If you want a RepRap, the choice is more difficult. I have not built a RepRap, but suspect that even with a larger vendor ecosystem it would be difficult to bring the total price tag for a laser cut or milled non-clone machine to under $1K for quality parts, electronics and components.

Closing Thoughts & Recommendations
The biggest barrier to entry is not price, but difficulty. No fabrication, assembly, software, design, calibration, of troubleshooting process is theoretically undoable by any able-bodied person, but the same can be said for rocket science.
You need a decent understanding of robotics, hardware, software, electronics and mechanics, need a little hand dexterity and a ton of patience. (Without these skills, you’ll definitely get frustrated.) You can do it, but if you can’t sit at your workbench in 2-hour stretches assembling (and occasionally reassembling) a part, going through many print iterations (over the course of days) to get it just right, you may want to consider having a shop print parts for you, or looking into a commercial laser cutter or milling machine instead.
Consumer 3D printing is still in its infancy, but the Makerbot Thing-o-Matic (and ancestry) are clear and decisive steps towards a day when all forms of matter can be assimilated from raw materials as easy as loading a coffee maker. Despite a few questionable design choices of electronics components, I give the Thing-o-Matic an overall 4-of-5 star rating and highly recommend either a fully compiled kit (like I did here), or pre-assembled kit for a few hundred USD more, assuming you’re comfortable with the prerequisite knowledge, time and money commitments.
Score Breakdown
  • Documentation: 4 of 5
  • Ease of Use: 3 of 5
  • Coolness: 5 of 5
  • Price Competitiveness: 4 of 5
  • Support: 5 of 5
  • Quality: 3 of 5
—————-
Overall: 4 of 5
Recommended for:  Hardcore geeks looking for a ton of fun in a challenging meta-project.
Additional Media
Thing-o-Matic First Prints
Blurry Thing-o-Matic Up Close
My power supply has an fatal failure after a handful of prints. Makerbot has sent a replacement free of charge.
The blow-out seems to be a capacitor. I believe that the power supply may not have enough kung-fu to power all the components.
I hacked in a new power supply with higher specs, but it didn't fit perfectly. 🙂