
2009.02.09 - Preston Lee <preston.lee@openrain.com> - Http://prestonlee.com

ruby-prolog
Logical programming with Ruby declarations.

Monday, February 9, 2009

mailto:preston.lee@openrain.com
mailto:preston.lee@openrain.com
http://prestonlee.com
http://prestonlee.com


Logical programming paradigm.

✤ Declarative.
We define the rules for the world, but not how to process them.

✤ Inherently recursive.
The interpreter will automatically recurse to evaluate a query behind the scenes.

✤ Turing complete.
You can program without objects or functions, if you so choose.

✤ Artificial intelligence.
It’s easier to define and resolve complex logical problems when we think mathematically.

Monday, February 9, 2009



Core Prolog concepts.

✤ Rules
✤ Generic semantic definitions (predicates) of how your world works via clauses.
✤ Declarations are formal mathematics (predicate logic) in programming syntax. 

✤ Facts
✤ Assertions of truth about the world.
✤ Bob is Charlie’s father.
✤ Bob is Dale’s father.

✤ Queries
✤ Attempts to resolve an unknown logical statement using the rule given the facts.

Monday, February 9, 2009



Project history.

✤ tiny_prolog resolver/unification implementation from teh 
internets. Various small additional patches.

✤ Refactored to be object-oriented, not mess with 
method_missing globally, play nice with garbage 
collection and support multiple simultaneous contexts.

✤ Test cases from scratch, and various snippets ported from 
Prolog.

Monday, February 9, 2009



Simple family tree, in Prolog.

✤ Rules
✤ We are siblings if we share a parent.
✤ A father is a parent.
✤ A mother is a parent.

✤ Facts
✤ Alice is Charlie’s mother.
✤ Bob is Charlie’s father.
✤ Bob is Dale’s father.

✤ Queries
✤ Who are Alice’s siblings?

sibling(X, Y)      :- parent_child(Z, X), parent_child(Z, Y).

parent_child(X, Y) :- father_child(X, Y).
parent_child(X, Y) :- mother_child(X, Y).

mother_child(alice, charlie).
father_child(bob, charlie).
father_child(bob, dale).

/*
* Who are Charle's siblings?
* sibling(charlie, X).
*
* Who are Charlie's parents?
* parent_child(X, sally).
*/

Monday, February 9, 2009



Imperative programming support.

/*******************************************************
 * 99 Bottles of Beer
 * Paul J. DeMarco  9/20/2002
 * beer.pro
 * To execute start gprolog (others may work)
 * consult('beer.pro').
 * drink(beer,99).
 *******************************************************/
english(beer,0):-
                        write('no more bottle of beer').
english(beer,1):-
                        write('1 bottle of beer').
english(beer,X):-
                        X >= 2,
                        write( X ) ,
                        write(' bottles of beer').
 
drink(beer,X):- X >= 1,
                        english(beer,X),
                        write(' on the wall, '),
                        english(beer,X),
                        write(', take one down, pass it around\n'),
                        X1 is X - 1,
                        english(beer,X1),
                        write(' on the wall.\n'),
                        drink(beer, X1).

Monday, February 9, 2009



ruby-prolog

✤ Prolog-like DSL.

✤ Object-oriented wrapper. 

✤ Not as complete as Prolog.

    c = RubyProlog::Core.new
    c.instance_eval do

      vendor['dell'].fact
      vendor['apple'].fact
      
      model['ultrasharp'].fact
      model['xps'].fact
      model['macbook'].fact
      model['iphone'].fact
      
      manufactures['dell', 'ultrasharp'].fact
      manufactures['dell', 'xps'].fact
      manufactures['apple', 'macbook'].fact
      manufactures['apple', 'iphone'].fact
      
      is_a['xps', 'laptop'].fact
      is_a['macbook', 'laptop'].fact
      is_a['ultrasharp', 'monitor'].fact
      is_a['iphone', 'phone'].fact
      
      kind['laptop']
      kind['monitor']
      kind['phone']
      
      model[:M] <<= [manufactures[:V, :M]]
      
      vendor_of[:V, :K] <<= [vendor[:V],
                   manufactures[:V, :M], is_a[:M, :K]]

      p query(is_a[:K, 'laptop'])
      p query(vendor_of[:V, 'phone'])

    end

Monday, February 9, 2009



Complex logical reasoning.

The Towers of Hanoi

Monday, February 9, 2009



Two implementations.

c = RubyProlog::Core.new
c.instance_eval do

  move[0,:X,:Y,:Z] <<= :CUT
  move[:N,:A,:B,:C] <<= [
    is(:M,:N){|n| n - 1}, # reads as "M IS N - 1"
    move[:M,:A,:C,:B],
    write_info[:A,:B],
    move[:M,:C,:B,:A]
  ]
  write_info[:X,:Y] <<= [
    write["move a disc from the "],
    write[:X], write[" pole to the "],
    write[:Y], writenl[" pole "]
  ]
   
  move[3,"left","right","center"]
   
end

move(1,X,Y,_) :-  
    write('Move top disk from '), 
    write(X), 
    write(' to '), 
    write(Y), 
    nl.

move(N,X,Y,Z) :- 
    N>1, 
    M is N-1, 
    move(M,X,Z,Y), 
    move(1,X,Y,_), 
    move(M,Z,Y,X).

/* move(3,left,right,center). */

Prolog ruby-prolog

Monday, February 9, 2009



ACL Example

examples/acls.rb

Monday, February 9, 2009



Ideas for the future.

✤ active_prolog - Logical interface to relational ActiveRecord objects.

✤ logical_authentication - Easy custom ACL creation and enforcement.

✤ logical_search - Custom DB search query builder using English-like 
predicates.

✤ ...

Monday, February 9, 2009



Thanks!

✤ Code: http://github.com/preston/ruby-prolog/tree/master

✤ Releases: http://rubyforge.org/projects/ruby-prolog/

Monday, February 9, 2009

http://github.com/preston/ruby-prolog/tree/master
http://github.com/preston/ruby-prolog/tree/master
http://rubyforge.org/projects/ruby-prolog/
http://rubyforge.org/projects/ruby-prolog/

