
Ruby P2P Applications
With Ruby threads and Journeta

by Preston Lee and the OpenRain crew.
http://journeta.rubyforge.org/

http://www.openrain.com

1Tuesday, September 9, 2008

http://journeta.rubyforge.org
http://journeta.rubyforge.org
http://www.openrain.com
http://www.openrain.com

Today
• What

• Why

• How

• Demos!

2Tuesday, September 9, 2008

what journeta is
why you should care about
how journeta makes its magic
wrap up with demos which will make much more sense after discussing concepts

• Peer discovery. • Object passing.

Journeta also Ruby processes on the same LAN to
communicate by providing two primary services.

(MySpace for Ruby processes?)

3Tuesday, September 9, 2008

the “what”
allows arbitrary ruby runtimes to talk to each other!

Endless Possibilities
• Pair programming.

• Team debugging.

• Ad hoc test clusters.

• File sharing.

• Configuration sharing.

• Directory discovery.

• Grid computing.

• Swarm downloading.

• Multiple monitors.

• Presence tracking.

• Instant messaging.

• Backups.

• Games.

• <your idea>

4Tuesday, September 9, 2008

Design Goals
• Applications should talk.

A lot.

• Low learning curve.
Hide all the complicated stuff from the developer.

• Easy to integrate.
A library, not framework.

• Enable collaboration.
A new paradigm of real-time tools.

• No dependencies.

• Portable.
OS X, Solaris, Linux, Windows.

5Tuesday, September 9, 2008

Technical Overview

• Asynchronous peer discovery
via UDP subnet broadcast.

• Asynchronous peer I/O
via direct TCP connections.

• Messages are YAML
serialized/deserialized to/from ordinary objects.

• Lots of threads
to accomplish all this asynchronous madness.

6Tuesday, September 9, 2008

• OS X or Linux
Yeah yeah... Windows coming soon.

• 1.8.7 (maybe 1.8.6) standard runtime.
Would love a JRuby patch. :)

Current Requirements

7Tuesday, September 9, 2008

Inside The Magic

• Networking. • Multi-threading.

Journeta‘s inner workings only require
knowledge of two things outside Ruby.

8Tuesday, September 9, 2008

this stuff is NOT required to use journeta!!!
..but demos will be much more meaningful after discussion.

Teh Internets In Review
• Internet

• IP Address.
Logical network node using the “Internet Protocol”.

• Port.
A mailbox at a given IP address

• UDP
http://en.wikipedia.org/wiki/User_Datagram_Protocol

• TCP
http://en.wikipedia.org/wiki/
Transmission_Control_Protocol

• Subnet
A range of network IP addresses which isolates stuff that
needs to talk.

• “Border”
Router, bridge or gateway that connects your LAN to
others.

• Journeta

• Peer
A logical node with a unique IP address port number
combo. Each peer assigns itself a universally-unique
identifier. (UUID)

• Peer Handler
Application provided code to do something with
incoming peer data.

9Tuesday, September 9, 2008

http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Transmission_Control_Protocol

Ruby Green Threads
• Pros

• Ruby-specific calls.
Cool functions not available on other runtimes.

• Consistent across platforms.
Native thread semantics vary by OS.

• Cons
• Ruby-specific calls.

Not portable to other runtimes.

• Single CPU.

• Time slicing not so hot.
Easy to encounter starvation.

• Not scalable.
N threads running T milliseconds each == slow.

• Slower than native.
The kernel will probably always be able to
outperform a user-space scheduler,. JRuby’s native
thread mapping approach, for example.

• Pain to debug and test.
Tends to be complicated and not well understood.
I haven’t figured out a great approach to this in
Ruby yet.. anyone?

http://spec.ruby-doc.org/wiki/Ruby_Threading

10Tuesday, September 9, 2008

http://spec.ruby-doc.org/wiki/Ruby_Threading
http://spec.ruby-doc.org/wiki/Ruby_Threading

Handling Peer Events
require ‘journeta’
include Journeta
include Journeta::Common
include Journeta::Common::Shutdown

class MyHandler
 def call(msg)
 if !msg.nil? && msg.class == BasicMessage
 # do stuff with the data!
 puts msg.text
 end
 end
end

j = Journeta::Engine.new(
:peer_handler => MyHandler.new, #optional
:peer_port => (4000 + rand(1000)), # optional
:groups => ['my_app']) # optional

stop_on_shutdown(j)
j.start

11Tuesday, September 9, 2008

Sending Peer Events
anything serializable to yaml can be sent!
m = BasicMessage.new
m.name = name
m.text = input
journeta.send_to_known_peers(m)

who are my peers?
self.known_peers(true).each do |uuid, peer|
 # uuid is an int
 # peer is a PeerConnection
end

send your friend (of uuid 42) some data
journeta.send_to_peer(42, {:stuff => [1, 2, 3]})

12Tuesday, September 9, 2008

Demos!
• Command line.

• network_status.rb

• instant_messenger.rb

• queue_server.rb
queue_client.rb

• peer_fuzzer.rb

• GUI

• instant_messenger_gui.rb
(requires wxruby)

• Rails integration.
(journeta_status_demo)

• Fail Whale

• JRuby

• Ruby 1.9

13Tuesday, September 9, 2008

http://code.openrain.com/rails/journeta_status_demo/

Coming Soon
• Message encryption.

• Peer authentication.

• More callback types.

• JRuby?

14Tuesday, September 9, 2008

