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Today
• What

• Why

• How

• Demos!
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what journeta is
why you should care about
how journeta makes its magic
wrap up with demos which will make much more sense after discussing concepts



• Peer discovery. • Object passing.

Journeta also Ruby processes on the same LAN to 
communicate by providing two primary services.

(MySpace for Ruby processes?)
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the “what”
allows arbitrary ruby runtimes to talk to each other!



Endless Possibilities
• Pair programming.

• Team debugging.

• Ad hoc test clusters.

• File sharing.

• Configuration sharing.

• Directory discovery.

• Grid computing.

• Swarm downloading.

• Multiple monitors.

• Presence tracking.

• Instant messaging.

• Backups.

• Games.

• <your idea>
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Design Goals
• Applications should talk.

A lot.

• Low learning curve.
Hide all the complicated stuff from the developer.

• Easy to integrate.
A library, not framework.

• Enable collaboration.
A new paradigm of real-time tools.

• No dependencies.

• Portable.
OS X, Solaris, Linux, Windows.
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Technical Overview

• Asynchronous peer discovery
via UDP subnet broadcast.

• Asynchronous peer I/O
via direct TCP connections.

• Messages are YAML
serialized/deserialized to/from ordinary objects.

• Lots of threads
to accomplish all this asynchronous madness.
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• OS X or Linux
Yeah yeah... Windows coming soon.

• 1.8.7 (maybe 1.8.6) standard runtime.
Would love a JRuby patch. :)

Current Requirements
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Inside The Magic

• Networking. • Multi-threading.

Journeta‘s inner workings only require 
knowledge of two things outside Ruby.
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this stuff is NOT required to use journeta!!!
..but demos will be much more meaningful after discussion.



Teh Internets In Review
• Internet

• IP Address.
Logical network node using the “Internet Protocol”.

• Port.
A mailbox at a given IP address

• UDP
http://en.wikipedia.org/wiki/User_Datagram_Protocol

• TCP
http://en.wikipedia.org/wiki/
Transmission_Control_Protocol

• Subnet
A range of network IP addresses which isolates stuff that 
needs to talk.

• “Border”
Router, bridge or gateway that connects your LAN to 
others.

• Journeta

• Peer
A logical node with a unique IP address port number 
combo. Each peer assigns itself a universally-unique 
identifier. (UUID)

• Peer Handler
Application provided code to do something with 
incoming peer data.
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Ruby Green Threads
• Pros

• Ruby-specific calls.
Cool functions not available on other runtimes.

• Consistent across platforms.
Native thread semantics vary by OS.

• Cons
• Ruby-specific calls.

Not portable to other runtimes.

• Single CPU.

• Time slicing not so hot. 
Easy to encounter starvation.

• Not scalable.
N threads running T milliseconds each == slow.

• Slower than native.
The kernel will probably always be able to 
outperform a user-space scheduler,. JRuby’s native 
thread mapping approach, for example.

• Pain to debug and test.
Tends to be complicated and not well understood. 
I haven’t figured out a great approach to this in 
Ruby yet.. anyone?

http://spec.ruby-doc.org/wiki/Ruby_Threading
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Handling Peer Events
require ‘journeta’
include Journeta
include Journeta::Common
include Journeta::Common::Shutdown

class MyHandler
  def call(msg)
    if !msg.nil? && msg.class == BasicMessage
      # do stuff with the data!
      puts msg.text
    end
  end
end

j = Journeta::Engine.new(
:peer_handler => MyHandler.new, #optional
:peer_port => (4000 + rand(1000)), # optional
:groups => ['my_app']) # optional

stop_on_shutdown(j)
j.start
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Sending Peer Events
# anything serializable to yaml can be sent!
m = BasicMessage.new
m.name = name
m.text = input
journeta.send_to_known_peers(m)

# who are my peers?
self.known_peers(true).each do |uuid, peer|
  # uuid is an int
  # peer is a PeerConnection
end

# send your friend (of uuid 42) some data
journeta.send_to_peer(42, {:stuff => [1, 2, 3]})
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Demos!
• Command line.

• network_status.rb 

• instant_messenger.rb

• queue_server.rb
queue_client.rb

• peer_fuzzer.rb

• GUI

• instant_messenger_gui.rb
(requires wxruby)

• Rails integration.
(journeta_status_demo)

• Fail Whale

• JRuby

• Ruby 1.9
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http://code.openrain.com/rails/journeta_status_demo/



Coming Soon
• Message encryption.

• Peer authentication.

• More callback types.

• JRuby?
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